Advanced String Monitoring System of today

What happens when a module fails in a 1-megawatt photovoltaic system, bringing down a 3-kilowatt string?

If the monitoring system tracks production for each of the two 500-kilowatt inverters, the loss of output will only represent 0.6 percent of a 500-kilowatt array’s capacity — virtually impossible to detect, especially when pyranometers commonly used in utility-scale PV plants measure solar irradiance with a +/- 2 percent uncertainty (or more). Even comparing the output of both inverters would hardly allow detection of the fault: inverters measure power output with a relatively high uncertainty (typically +/- 1 percent to +/- 5 percent).

Arguably, even multiple string failures could go unnoticed until the next inspection when maintenance technicians perform systematic string testing.

In order to quickly detect such failures and minimize the associated energy losses, some PV plants are equipped with string monitoring equipment. This consists of “smart combiners” collecting current (and sometimes voltage) for a string or a small group of strings, and sending this data to the monitoring system where some software analyzes the information and identifies low production string conditions.

String monitoring is a common practice in most European markets, along with string inverter designs for PV systems, which intrinsically provide the ability to monitor at the string level, since each inverter is a string or a small group of strings. In a recently published report about global PV monitoring markets, GTM Research and SoliChamba Consulting estimated that 100 percent of new utility-scale PV plants in Germany in 2012 were string-monitored, along with 95 percent of large commercial systems and 85 percent of small commercial ones (including plants with string inverters).

In other parts of the world like the U.S. and Japan, however, very few PV plants are string-monitored, even in the utility-scale segment. In those markets, the dominant perception is that string monitoring significantly increases the initial cost of the PV system without providing enough yield increase to justify such investment. No independent study has either proved or disproved this theory, and opinions may vary between EPC firms and project developers.

In order to better understand the logic behind this different approach, let’s examine the economics of a broken “3-kilowatt string”. Assuming that the average annual yield is 1,500 kWh/ kWp and the faulty string goes undetected for six months (until the next inspection), the lost production would amount to 2,250 kilowatt-hours. For a 2006-built German plant benefiting from the 40 euro cents feed-in tariff, this would represent a $1,200 loss. For a 1-megawatt system, the additional cost of string monitoring equipment ranges from $10,000 to $15,000, which is the equivalent of $500 to $750 annually over a twenty-year time span (excluding financing costs and installation, which is usually part of overall EPC budget). In these conditions, an average of one string failure per year would justify the investment. For a U.S. plant with a PPA (Power Purchase Agreement) price of 10 cents, however, the same production loss would only be worth $225, so it would take two to four annual string failures on the same 1-megawatt array to justify the investment. This simple calculation goes a long way toward explaining the gap in string monitoring adoption rates between Germany and the U.S.

In the past few years, a new DC array monitoring practice emerged in America, referred to as “zone monitoring” or “sub-array monitoring.”

By collecting sub-array data from the master combiner, zone monitoring provides an intermediate level of granularity for issue detection and diagnostics, at a much lower upfront cost than string monitoring ($3,500 to $5,000 for a 1-megawatt plant). With this approach, the ability to detect subtle issues is more limited, and the guilty string cannot be specifically identified — it is only possible to single out the sub-array that is underperforming because of it. In the case of our previous example, if each 500-kilowatt master combiner includes 15 sub-arrays (for a 33-kilowatt individual capacity), the loss of a 3-kilowatt string represents a 10 percent reduction of the affected sub-array’s capacity — an easily detectable anomaly. GTM Research and SoliChamba Consulting estimate the adoption of DC monitoring in the U.S. in 2012 at 65% in the utility-scale segment, 25% in the large commercial segment, and 15% in small commercial. Most of it is believed to be zone monitoring.

As often in the solar world, the ultimate decision to adopt a technology lies in the hands of the investors and their technical advisors. In Europe, these firms often mandate string monitoring for large-scale plants, and will consider a PV system less valuable if it does not include such monitoring capability. In the U.S., few solar investors have a strong opinion on this topic, and independent engineering firms that validate the production estimates used in financial calculations do not consider any difference in output whether a plant is a monitored at the inverter, sub-array or string level. In such circumstances, project developers and EPC firms are unlikely to invest in string monitoring technology.

Over time, as more data becomes available about module and string failure rates, we can expect the choice of monitoring approach to become less cultural and more financial.

 

Advertisements

About adsprojects

ADS Projects & Systems Pvt. Ltd. is a progressive and dynamic technology specific innovative business solutions provider, which offers a wide spectrum of management consultancy services, ranging from Construction Sector to Renewable Energy field, to provide best value for money for the client. We are committed to providing end to end solutions that range from the visualization to formulation and from actual implementation to its successful launch. We have a clear focus on the needs of our clients to solve all their problems and challenges; and are committed to delivering quality projects on time and within budget. We believe that space ship earth is not a metaphor but a hard reality and therefore we are aiming to build a green and sustainable future. An orderly way of studying and analyzing the project is more important than simply designing and executing it. That is why we lay more emphasis on proper planning and monitoring of the project, so that our client can have better cost control over the lifetime of the project. The motto of our company “Green is Life”, is the lifeline for our growth. We are an eco-friendly company who are committed to the environment and our client, which is why we provide the best solutions for both of them. Backed by our highly dedicated team of professionals, we develop tailored solutions for our clients We have collaborated in the field of Renewable Energy, with a German organization by the name of Steinbeis. The CEO of our company is the Director of Steinbeis Centre for Renewable Energy Technologies & Training in India. Steinbeis is a German organisation and has its headquarters in Stuttgart, Germany. Steinbeis builds bridges between world of Science, Academia and Business and has 810 Technology, Transfer & Training Centers in 17 countries, along with that, Global Experts & Project Partners in another 38 countries The services being offered by Steinbeis Centre for Renewable Energy Technologies & Training are Technical Consultancy & New Technology Development; International Technology Scouting, Evaluation & Transfer; Training & Further Education for technicians, Students & Professionals; and Industry interfacing for Professional Institutions. We have also collaborated with an Australian organisation by the name of Global Knowledge Alliance in the field of Education, Training & Skill Development as well. There will be more than 30 study areas and 1,900 accredited courses conforming to international standards which will be offered to all age groups in India.

Posted on September 11, 2013, in R&D in Solar Energy and tagged , , . Bookmark the permalink. Leave a comment.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: